The mutant not enough muscles (nem) reveals reduction of the Drosophila embryonic muscle pattern.
نویسندگان
چکیده
In a search for mutations affecting embryonic muscle development in Drosophila we identified a mutation caused by the insertion of a P-element, which we called not enough muscles (nem). The phenotype of the P-element mutation of the nem gene suggests that it may be required for the development of the somatic musculature and the chordotonal organs of the PNS, while it is not involved in the development of the visceral mesoderm and the dorsal vessel. Mutant embryos are characterized by partial absence of muscles, monitored by immunostainings with mesoderm-specific anti-beta 3 tubulin and anti-myosin heavy chain antibodies. Besides these muscle distortions, defects in the peripheral nervous system were found, indicating a dual function of the nem gene product. Ethyl methane sulfonate-induced alleles for the P-element mutation were created for a detailed analysis. One of these alleles is characterized by unfused myoblasts which express beta 3 tubulin and myosin heavy chain, indicating the state of cell differentiation.
منابع مشابه
Somatic mesoderm differentiation and the development of a subset of pericardial cells depend on the not enough muscles (nem) locus, which contains the inscuteable gene and the intron located gene, skittles
Not enough muscles (nem) mutants of Drosophila reveal defects in the development of embryonic muscles, a subset of pericardial cells, the CNS and derivatives of the PNS (Burchard, S., Paululat, A., Hinz, U. and Renkawitz-Pohl, R. (1995) The mutant not enough muscles (nem) reveals reduction of the Drosophila embryonic muscle pattern. J. Cell. Sci. 108, 1443-1454). The molecular analysis of the n...
متن کاملRegulation and Functions of the lms Homeobox Gene during Development of Embryonic Lateral Transverse Muscles and Direct Flight Muscles in Drosophila
BACKGROUND Patterning and differentiation of developing musculatures require elaborate networks of transcriptional regulation. In Drosophila, significant progress has been made into identifying the regulators of muscle development and defining their interactive networks. One major family of transcription factors involved in these processes consists of homeodomain proteins. In flies, several mem...
متن کاملDrosophila paramyosin is important for myoblast fusion and essential for myofibril formation
Paramyosin is a major structural protein of thick filaments in invertebrate muscles. Coiled-coil dimers of paramyosin form a paracrystalline core of these filaments, and the motor protein myosin is arranged on the core surface. To investigate the function of paramyosin in myofibril assembly and muscle contraction, we functionally disrupted the Drosophila melanogaster paramyosin gene by mobilizi...
متن کاملTwist and Notch negatively regulate adult muscle differentiation in Drosophila.
Twist is required in Drosophila embryogenesis for mesodermal specification and cell-fate choice. We have examined the role of Twist and Notch during adult indirect flight muscle development. Reduction in levels of Twist leads to abnormal myogenesis. Notch reduction causes a similar mutant phenotype and reduces Twist levels. Conversely, persistent expression, in myoblasts, of activated Notch cau...
متن کاملDrosophila UNC-45 accumulates in embryonic blastoderm and in muscles, and is essential for muscle myosin stability.
UNC-45 is a chaperone that facilitates folding of myosin motor domains. We have used Drosophila melanogaster to investigate the role of UNC-45 in muscle development and function. Drosophila UNC-45 (dUNC-45) is expressed at all developmental stages. It colocalizes with non-muscle myosin in embryonic blastoderm of 2-hour-old embryos. At 14 hours, it accumulates most strongly in embryonic striated...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 108 ( Pt 4) شماره
صفحات -
تاریخ انتشار 1995